How to - Download the EBook Crayon PortraitureInformational Site Network Informational
Home Gardening in General Fruits & Vegetables Plants & Flowers
Articles - Directory - Indoor Gardening - Small Gardens Cucumbers - Apple Growing - Asparagus - Walnut Growing - Vegetables Flowers - Clovers

Most Viewed

Hardy Climbing Vines Ivies
Berries And Small Fruits
Requisites Of The Home Vegetable Garden
Plant Names.
Plants And The Calendar.
Sacred Plants.
The Maidenhairs

Least Viewed

The Rose: Its General Care And Culture
Planning The Garden
The Wild Garden A Plea For Our Native Plants
Planting The Lawn
Plants For Special Purposes
The Gladiolus
The Winter Garden
Iv. Crops That May Follow Others
The Hardy Border

Using Humus to Increase Soil Moisture

Maintaining topsoil humus content in the 4 to 5 percent range is vital to plant health, vital to growing more nutritious food, and essential to bringing the soil into that state of easy workability and cooperation known as good tilth. Humus is a spongy substance capable of holding several times more available moisture than clay. There are also new synthetic, long-lasting soil amendments that hold and release even more moisture than humus. Garden books frequently recommend tilling in extraordinarily large amounts of organic matter to increase a soil's water-holding capacity in the top few inches. Humus can improve many aspects of soil but will not reduce a garden's overall need for irrigation, because it is simply not practical to maintain sufficient humus deeply enough. Rotary tilling only blends amendments into the top 6 or 7 inches of soil. Rigorous double digging by actually trenching out 12 inches and then spading up the next foot theoretically allows one to mix in significant amounts of organic matter to nearly 24 inches. But plants can use water from far deeper than that. Let's realistically consider how much soil moisture reserves might be increased by double digging and incorporating large quantities of organic matter. A healthy topsoil organic matter level in our climate is about 4 percent. This rapidly declines to less than 0.5 percent in the subsoil. Suppose inches-thick layers of compost were spread and, by double digging, the organic matter content of a very sandy soil were amended to 10 percent down to 2 feet. If that soil contained little clay, its water-holding ability in the top 2 feet could be doubled. Referring to the chart "Available Moisture" in Chapter 2, we see that sandy soil can release up to 1 inch of water per foot. By dint of massive amendment we might add 1 inch of available moisture per foot of soil to the reserve. That's 2 extra inches of water, enough to increase the time an ordinary garden can last between heavy irrigations by a week or 10 days. If the soil in question were a silty clay, it would naturally make 2 1/2 inches available per foot. A massive humus amendment would increase that to 3 1/2 inches in the top foot or two, relatively not as much benefit as in sandy soil. And I seriously doubt that many gardeners would be willing to thoroughly double dig to an honest 24 inches. Trying to maintain organic matter levels above 10 percent is an almost self-defeating process. The higher the humus level gets, the more rapidly organic matter tends to decay. Finding or making enough well-finished compost to cover the garden several inches deep (what it takes to lift humus levels to 10 percent) is enough of a job. Double digging just as much more into the second foot is even more effort. But having to repeat that chore every year or two becomes downright discouraging. No, either your soil naturally holds enough moisture to permit dry gardening, or it doesn't.

Next: Keeping the Subsoil Open with Green Manuring

Previous: Spotting a Likely Site

Add to Add to Reddit Add to Digg Add to Add to Google Add to Twitter Add to Stumble Upon
Add to Informational Site Network

Viewed 1159